, –

06PHY12/22

12

NEW SCHEME

I/II Semester B.E. Degree Examination, Dec.06 / Jan.07 Common to all Branches

Engineering Physics

Time: 3 hrs.]

[Max. Marks:100

Note: 1. Answer any FIVE questions choosing at least two questions from each part

List of Constants:

SRINIVAS INSTITUTE OF TECHNOLOGY

- i) Velocity of light $C = 3 \times 10^8$ m/s. LIBEARY, MANGALORE
- ii) Planck's constant = $h = 6.626 \times 10^{-34}$ Js.
- iii) Mass of neutron = 1.67×10^{-27} kg.
- iv) Boltzmann constant = 1.38×10^{-23} J/K.
- v) Electron mass = 9.11×10^{-31} kg.
- vi) Electrons charge = 1.6×10^{-19} C.
- vii) \in_0 permittivity of vacuum = 8.85×10^{-12} Fm⁻¹.

Part A

1 a. Discuss Planck's radiation law.

- (05 Marks)
- b. Explain the duality of matter waves from the inferences drawn from photoelectric effect and Davisson-Germer effect. (05 Marks)
- c. Define group velocity and obtain an expression for the same.
- (05 Marks)
- d. A particle of mass 0.5 Mev/C² has kinetic energy 100 ev. Find its de-Broglie wavelength, where C is the velocity of light. (05 Marks)
- 2 a. Show that electrons cannot exist in the nucleus of an atom.
- (07 Marks)
- b. An electron has a speed of 6×10^5 m/s with an inaccuracy of 0.01%. With what fundamental accuracy can we locate the position of the electron? (05 Marks)
- c. Discuss the wave functions, probability densities and energy levels for a particle in a box. (08 Marks)
- 3 a. State Mathiessien's rule and give an account of the nature of total resistivity both at high and low temperatures. (05 Marks)
 - b. Using the free electron model derive an expression for electrical conductivity in metals. (07 Marks)
 - c. Explain density of states.

- (03 Marks)
- d. Calculate the drift velocity and thermal energy of electrons in a metal of thickness 1 mm across which a potential difference of 1 volt is applied, at the temperature of 300 K. The mobility of free electron is 40 cm²/v-s. (05 Marks)
- 4 a. Explain briefly the various types of polarization.

(08 Marks)

- b. Derive an expression for internal field in case of liquids and solids.
- (08 Marks)
- c. What is the polarization produced in sodium chloride by an electric field of 600 v/mm if it has a dielectric constant of 6? (04 Marks)

Page No...2

*Srin*ivas Institute of Technology Library, Mangalore

06PHY12/22

Part B

- 5 a. Explain with sketches the basic principle of operation of lasers. (08 Marks)

 b. Describe the construction and working of He-Ne laser with energy level diagram.
 - b. Describe the construction and working of He-Ne laser, with energy level diagram.
 (08 Marks)
 - c. A laser medium at thermal equilibrium temperature 300 K has two energy levels with a wavelength separation of 1 µm. Find the ratio of population densities of the upper and lower levels. (04 Marks)
- 6 a. Explain in brief Type-I and Type-II super conductors. How does a super conductor differ from a normal conductor? (10 Marks)
 - b. What is attenuation in an optical fibre? Explain the attenuation mechanisms.

(05 Marks)

- c. The attenuation of an optical fibre is -3.6 dB/km. What is the fraction of light intensity that remains after i) 1 km ii) after 3 km? (05 Marks)
- 7 a. Define crystal lattice, unit cell and primitive cell. (06 Marks)
 - b. What is atomic packing factor? Work out atomic packing factors for simple cubic, FCC and BCC structures. (10 Marks)
 - c. Calculate the glancing angle on the cube (132) of NaCl, having lattice spacing 3.81A°, corresponding to the second order diffraction for x-rays of wavelength 0.58A°. (04 Marks)
- 8 a. What are nanomaterials? Write a note on carbon nanotubes. (06 Marks)
 - b. What is non-destructive testing? Explain with principle how flow in a solid can be detected by non-destructive method using ultrasonics? (07 Marks)
 - c. Explain "scaling laws". Explain scaling of classical mechanical systems along with two examples and the assumptions involved in it. (07 Marks)

Srinivas Institute of Technology

Library, Mangalore

06PHY12/22

11

USN

First / Second Semester B.E. Degree Examination, July 2007 Common to all Branches

Engineering Physics

SRINIVAS INSTITUTE OF TECHNOLOGY

Time: 3 hrs.]

Note: Answer any FIVE full questions choosing atleast two questions from each part.

List of constants:

- 1. Velocity of light $C = 3 \times 10^8$ m/s.
- 2. Plank's constant $h = 6.626 \times 10^{-34} Js$.
- 3. Mass of neutron = 1.67×10^{-27} kg.
- 4. Boltzman constant = 1.38×10^{-23} J/K.
- 5. Electron mass = 9.11×10^{-31} kg.
- 6. Electron's charge = 1.6×10^{-19} C.
- 7. \in permittivity of vacuum = $8.85 \times 10^{-12} Fm^{-1}$.

Part A

- a. Give a brief account of black body radiation and Plank's radiation law, leading to quantization of energy. (04 Marks)
 - b. Explain phase velocity, group velocity and particle velocity and write down the relation between them. (06 Marks)
 - c. From the concept of group velocity, obtain an expression for De'Broglie wavelength.

 (06 Marks)
 - d. Calculate the De'Broglie wavelength of a 0.3 kg cricket ball with a speed of 120 km/hr. (04 Marks)
- 2 a. What are the properties of wave functions?

(04 Marks)

- b. Find the eigen functions and eigen values for a particle in one dimensional potential well of infinite height and discuss the solutions. (11 Marks)
- c. A spectral line of wavelength $4000 \, A$ has a width of $8 \times 10^{-5} \, A$. Evaluate the minimum time spent by the electrons in the upper energy state between the excitation and deexcitation processes. (05 Marks)
- a. Elucidate the difference between classical free electron theory and quantum free electron theory. (06 Marks)
 - b. Explain Fermi energy and Fermi factor. Discuss the variation of Fermi factor with temperature and energy. (08 Marks)
 - c. Find the relaxation time of conduction electrons in a metal of resistivity $1.54 \times 10^{-8} \Omega$ -m, if the metal has 5.8×10^{28} conduction electrons per m³. (06 Marks)

Srinivas Institute of Technology Library, Mangalore

Page No...2

28 7,7

06PHY12/22

(07 Marks)

		Part B
4	a.	Derive the equation for internal field in liquid and solids. (08 Marks)
	b.	The atomic weight and density of the stories and solids. (08 Marks)
		The working weight and uchilly of childhile are 27 and 7 and 1 and 1
		The electronic polarizability of the atom is 3.20 10.40 to 2.70.11
		and and the control of the control o
	c.	Distinguish between hard and soft magnetic materials. (04 Marks) (08 Marks)
5	_	(or mail as)
3	a.	What are semiconductor diode lasers? Describe with energy band diagram the
		CAMANA OL DOMINOROM MANAGEMAN AND AND AND AND AND AND AND AND AND A
	L	
	υ.	application of lasers in welding outline and difference
	c.	The manual of modes of the standing wayer and the c
		the resonant cavity of length 1 m of He-Ne laser operating at wavelength 632.8 nm.
		(04 Marks)
6	a.	
		Describe how Cooper pairs are formed and explain the salient features of super conductivity.
	b.	Explain the mechanism of tight (05 Marks)
		Explain the mechanism of light propagation in optical fibre. Discuss the different types of optical fibres with suitable diagrams.
		Calculate the number of modes an optical fibre can transmit, given the following data: wavelength of light = 1 up radius of the
		data: wavelength of light = 1 μ m, radius of the core = 50 μ m, Refractive index of the core = 1.50, Refractive index of the cladding 1.48.
		(05 Marks)
7	a.	Define lattice points brayon lattice and activities activities and activities activities and activities activities and activities acti
		Define lattice points, bravais lattice and primitive cell. Explain in brief the seven crystal systems with neat diagrams.
	b.	Explain with next sketch the diamond arrived (10 Marks)
	c.	Explain how Braggs X-ray spectrometer can be used to determine the interplanar spacing.
	:	
		(06 Marks)
3	a.	Write a brief note on
		i) Nanotechnology
		ii) Carbon nanotubes.
	b. '	What are ultrasonic waves? Describe a method of measuring the velocity of
	ι	
	c. Y	What is an acoustic grating? Explain how an acoustic grating is an all (07 Marks)
	1	relocity of ultrasonic waves in liquid. Also mention how the bulk modulus of a liquid
	C	can be evaluated.

Srinivas Institute of Library, Manga	T·3.
Library of	Technology
Manga	dora molegy

USN

Time: 3 hrs.

06PHY12/22

First/Second Semester B.E Degree Examination, Dec. 07 / Jan. 08

Engineering Physics Max. Marks:100

Note: Answer any FIVE full questions choosing atleast TWO questions from each part. List the contents: i) Velocity of light $C = 3 \times 10^8 \text{ m/s}$, ii) Planck's constant $h = 6.626 \times 10^{-34} \text{ J.s.}$, iii) Boltzman constant K = 1.38×10^{-23} J/K, iv) Electron mass m = 9.11×10^{-31} kg. v) Electron charge e = 1.6×10^{-19} C, vi) Permittivity of vacuum $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$

PART - A

- 1 a. Explain the energy distribution in the spectrum of a block body. Give an account of the attempts made through various laws to explain the spectrum. (08 Marks)
 - b. Define phase velocity and group velocity. Derive an expression for de-Broglie wavelength from group velocity. (07 Marks)
 - c. A particle of mass 0.65MeV/C² has a kinetic energy 80eV. Calculate the deBroglie wavelength, group velocity and phase velocity of the deBroglie wave. (05 Marks)
- 2 a. Assuming the time independent Schrodinger wave equation, discuss the solution for a particle in one dimensional potential well of infinite height. Hence obtain the normalized wave function. (08 Marks)
 - b. Explain Heisenberg's uncertainty principle. Based on this, show the non-existence of electrons inside the nucleus. (07 Marks)
 - c. An electron is bond in one dimensional potential well of width 0.12nm. Find the energy values in the ground state and also the first two excited states in eV. (05 Marks)
- 3 Based on free electron theory, derive an expression for electrical conductivity of metals. How does electrical resistance change with impurity and temperature? (09 Marks)
 - b. Describe Fermi-Dirac distribution and discuss the same for different temperature conditions. (06 Marks)
 - The Fermi level in potassium is 2.1eV. What are the energies for which the probabilities of occupancy at 300 K are 0.99, 0.01 and 0.5? (05 Marks)
- 4 a. Explain the term internal field. Derive an expression for internal field in the case of one dimensional array of atoms in dielectric solids. (08 Marks)
 - b. Describe the nature of hard and soft magnetic materials. Discuss their applications. (07 Marks)
 - Sulphur is elemental solid dielectric whose dielectric constant is 3.4. Calculate the electronic polarisability if its density is $2.07 \times 10^3 \text{kg/m}^3$ and atomic weight is 32.07. (05 Marks)

PART - B

- Describe the construction and working of He-Ne laser with the help of energy level diagram. 5 (08 Marks)

 - b. Describe the recording and reconstruction processes in Holography with the help of suitable diagrams. (08 Marks)
 - c. A He-Ne laser is emitting a beam with an average power of 4.5 mW. Find the number of photons emitted per second by the laser. The wavelength of the emitted radiation is 6328A°. (04 Marks)
- 6 What is Superconductivity? Describe type I and type II superconductors. (08 Marks)
 - b. Explain the different types of optical fiber, along with the refractive index profile and mode propagation sketches. (07 Marks)
 - c. Calculate the numerical aperture, fractional index change and V number for a fibre of core diameter 40µm and with refractive indices of 1.55 and 1.50 respectively for core and cladding. The wavelength of the propagating wave is 1400 nm. Assume that the fibre is in air. (05 Marks)
- 7 Define coordination number and packing factor. Calculate the packing factor for SC and bCC structures. (08 Marks)
 - b. Describe how Bragg's spectrometer is used for determination of crystal structure. (07 Marks)
 - c. An X-ray beam of wavelength 0.7A⁰ undergoes minimum order Bragg reflection from the plane (302) of a cubic crystal at glancing angle 35°. Calculate the lattice constant. (05 Marks)
- 8 Describe with theory a method of measuring velocity of ultrasonic waves in a liquid and mention how the bulk modulus of the liquid could be evaluated. (08 Marks)
 - b. What are nanomaterials? Write a note on carbon nanotubes. (07 Marks)
 - c. Discuss mechanical scaling. (05 Marks)

			Brini	vas Institute of	Technology.	3,	C
USN				ibrary, Mang	alore	1	06PHY

First/Second Semester B.E. Degree Examination, June/July 08

Engineering Physics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing at least two questions from each part.

2. Physical Constants: Electron mass m = 9.11 × 10³¹kg; Electron charge e = 1.6 × 10¹⁹C; Velocity of light C= 3 × 10⁸ m/S; Planck's constant h =6.63×10³⁴ JS; Avogadro number N=6.025×10²⁸/k mole; Permitivity of Vacuum ∈_o=8.85×10¹² F/m; Boltzmann constant, K=1.38×10²³ J/K

Part A

- a. What is Planck's radiation law? Show how Wien's law and Rayleigh Jeans's law can be derived from it. (06 Marks)
 - b. Explain phase velocity and group velocity. Derive the expression for de-Broglie wave length using the concept of group velocity.

 (09 Marks)
 - c. A particle of mass 0.65 MeV/C² has free energy 120 eV. Find its de Broglie wave length, C is the velocity of light. (05 Marks)
- 2 a. Show that electrons cannot exist in the nucleus of an atom.
 - b. Discuss the Eigen function Eigen values and probability density for a particle in a potential well of infinite depth. (10 Marks)
 - c. An electron is bound in one dimensional infinite well of width 0.12 nm. Find the energy values and de Broglie wave lengths in the ground state and first excited state. (05 Marks)
- a. Define drift velocity, mobility and relaxation time for free electron, derive the expression for conductivity interms of mean collision time. (10 Marks)
 - b. Show that occupation probability at $E = E_F + \Delta E$ is same as non -occupation probability at $E = E_F \Delta E$, E_F is the Fermi energy. (05 Marks)
 - c. At what temperature we can expect 1% probability that an energy level 0.5 eV above Fermi level will be occupied. (05 Marks)
- 4 a. What are dielectrics? Derive the equation for internal field in liquids and solids for one dimensional array of atoms. (10 Marks)
 - b. What are hard and soft magnetic materials? Give their characteristic properties and applications. (05 Marks)
 - c. A parallel plate capacitor has an area of 6.45×10^{-4} m² and plates are separated by a distance of 2×10^{-3} m across which a potential of 10V is applied. If a material with dielectric constant 6 is introduced between the plates, determine the capacitance, the charge stored on each plate and the polarization. (05 Marks)

Part B

- 5 a. Derive the expression for energy density of radiation using Einstein's Coefficients. Compare the expression with Planck's equation. (08 Marks)
 - b. Explain the construction and working of He Ne Laser.

(08 Marks)

(05 Marks)

- c. Find the ratio of population of two energy levels in a Laser if the transition between them produces light of wavelength 694.3 nm. Assume the ambient temperature to be 27°C. (04 Marks)
- 6 a. Discuss the three different types of optical fibres.

(06 Marks)

- b. Calculate the number of modes an optical fibre will transmit given the following data $n_{core} = 1.50$, $n_{clad} = 1.48$, core radius = 50 μ m, wave length of light = 1 μ m. (04 Marks)
- c. Discuss BCS theory of super conductivity.

(06 Marks)

d. Write short note on Maglev vehicles.

(04 Marks)

- 7 a. Explain how Miller indices are derived. Derive an expression for interplanar spacing of a crystal interms of Miller indices. (10 Marks)
 - b. Explain the structure of NaCl.

(06 Marks)

- c. X rays are diffracted in the first order from a crystal with d spacing 2.82×10^{-10} m at a glancing angle 6° . Calculate the wave length of x rays. (04 Marks)
- a. What are Scaling laws? Give the electromagnetic scaling laws for both steady state and time varying system.
 - b. Mention the factors which affect the velocity of ultrasonic waves in solids. Give the experimental method of determination of velocity of ultrasonic waves in liquids. (10 Marks)

ade de la companya d La companya de la co

First / Second Semester B.E. Degree Examination, Dec 08 / Jan 09 Engineering Physics

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast two questions from each Part.

2. Answer all objective type questions only in first and second writing pages.

		3. Answer for objective type questions shall not be repeated. Sical Constants: Electron mass $m = 9.11 \times 10^{-31}$ kg. Electron charge = 1.6×10^{-19} C, velocity of light $C = 3 \times 10^{8}$ m/s Planks constants $h = 6.63 \times 10^{-34}$ J.S. Avagadros number $N = 6.025 \times 10^{-28}$ K mol rmitivity of vaccum $\epsilon_0 = 8.85 \times 10^{-12}$ F/m, Boltzman constant $k = 1.38 \times 10^{-23}$ J/K.
		PART – A
1	a.	1) The debroglic wave length associated with an electron of mass m and accelerated by a potential v is
		i) $\frac{h}{\sqrt{2mve}}$ ii) $\frac{\sqrt{2mve}}{h}$ iii) $\frac{h}{vem}$ iv) $\frac{h}{2vem}$.
		2) Davison and Gelmer were the first to demonstrate:
		i) The straight line propogation of light ii) The diffraction of Photons
		iii) The effective mass of electron iv) None of the these.
		3) Electron behaves as waves because they can be:
	•	i) Deflected by an electric field ii) Diffracted by a crystal
		iii) Deflected by magnetic field iv) They ionize a gas.
		4) In Davison – Gelmer experiment the hump is most prominent when the electron is accelerated by
		i) 34 volts ii) 54 volts iii) 60 volts iv) 80 volts. (04 Marks)
	b.	Define Phase velocity and Group velocity. Show that Group velocity is same as particle velocity. (08 Marks)
	C	Derive de – broglic wave length using Group velocity. (04 Marks)
	d.	Compare the energy of a photon with that of a neutron when both are associated with wave
		length of $1A^0$ given that the mass of neutron is 1.678×10^{-27} kg. (04 Marks)
2	a.	1) The product of uncertainty between angular momentum and angular displacement is
		i) $\geq \frac{h}{2\pi}$ ii) $\geq \frac{h}{4\pi}$ iii) $\frac{h}{2\pi}$ iv) $\leq \frac{h}{4\pi}$.
		2) Kinetic energy of electron accelerated by a voltage 50Votls.
		i) 50ev ii) 10ev iii) 5ev iv) 15ev.

- 3) The energy of the lowest state in one dimensional potential box of length is
 - i) Zero
- ii) $\frac{2h^2}{8ma^2}$
- iii) $\frac{h^2}{8ma^2}$
- iv) $\frac{h}{8ma^2}$

4) The wave function for the motion of particles in one dimensional potential box of
length a is given by $\psi_n = D \sin \frac{n\pi}{a} x$. Where D is the normalization constant. The
value of D is
i) $\frac{1}{a}$ ii) $\sqrt{\frac{2}{a}}$ iii) a iv) $\sqrt{\frac{a}{2}}$ (04 Marks)
Set up time independent schrodinger wave equation. (06 Marks) Write the physical significance of wave function. (04 Marks) A quantum particle confined to one dimensional box of width 'a' is in its first excited state. What is the probability of finding the particle over an interval of (a/2) marked symmetrically at the centre of the box? (06 Marks)
 If the mobility of electron in a metal increases the resistivety. i) Decreases ii) Increases iii) Remains constant iv) none of these 2) Ohms law relates to the electric field E, conductivity σ and current density J as
i) $\dot{J} = \frac{E}{\sigma}$ ii) $\dot{J} = \sigma . E^2$ iii) $\dot{J} = \frac{\sigma}{E}$ iv) $\dot{J} = \sigma . E$
3) The average drift velocity Vd of electrons in a metal is related to the electric field E and collision time τ as
i) $\sqrt{\frac{\text{eE}\tau}{\text{m}}}$ ii) $\sqrt{\frac{\text{m}}{\text{eE}\tau}}$ iii) $\frac{\text{eE}\tau}{\text{m}}$, iv) $\frac{\text{m}}{\text{eE}\tau}$. 4) Experimentally specific heat at constant volume CV is given by i) $\frac{3}{2}$ R ii) 10^{-4} RT iii) $\frac{2}{3}$ R iv) 10^{-4} R. (04 Marks)
Write down the assumptions of classical free electron theory. (04 Marks) Explain failure of classical free electron theory. (06 Marks) Find the temperature at which there is 1% probability that a state with an energy 0.5ev above fermi energy is occupied. (06 Marks)
 The unit of dipole moment / unit volume is Coulomb / metre ii) Coulomb / metre² iii) coulomb / metre³ iv) Coulomb. The flux density is related to the electric field as D = ε + E iii) D = ε - E iiii) D = ε/E iv) D = ε E.
 3) In a solid or liquid dielectric with external applied electrical field, as the electronic polarizability α_c increases the interval field E_i. i) Increases ii) Reduces iii) Remains constant iv) none of these. 4) In a dielectric, the polarization is i) Linear function of applied field ii) Square function of applied field iii) Exponential functions of applied field iv) Logarithmic function of applied field. (04 Marks)
Derive an expression for internal field in case of one dimensional array of atoms in dielectric solids. (06 Marks) Describe Ferro electrics. (04 Marks) Sulphur is elemental solid dielectric whose dielectric constant is 3.4. Calculate electronic plarizability if its density is 2.07×10^3 kg/m³ and atomic wt is 32.07 . (06 Marks)
$\underline{PART - B}$

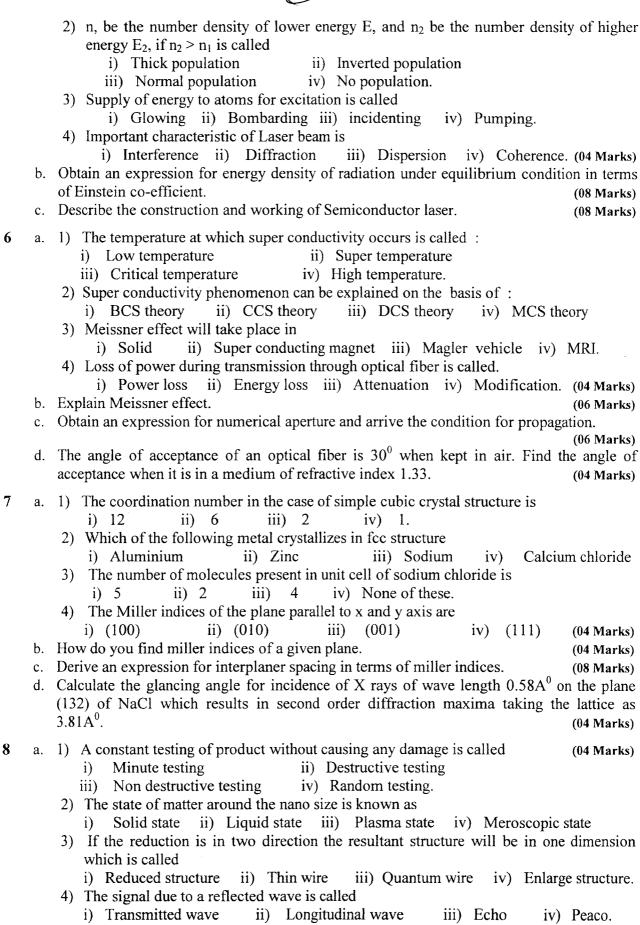
b. c. d.

a.

b. c. d.

a.

b.


c. d.

5

4

3

a. 1) The emission of photon without being aided by any external agency is called
 i) Light amplification ii) Induced absorption iii) Stimulated emission
 iv) Spontaneous emission.

(08 Marks)

(08 Marks)

b. Describe a method of measuring velocity of ultrasonic waves in solids.

c. Explain nano tubes and its applications.

06PHY12/22

First/Second Semester B.E. Degree Examination, June-July 2009 Engineering Physics

				— 11911100111	ig i liyoloo	
Tim	e:	3 hrs.				Max. Marks:100
Note		2. <i>Ans</i> : 3. <i>Ans</i> :	wer all objectiv wer to the objec	ull question, choosing the stype questions only ctive type questions of the first three type questions of the first type questions are the first type questions.	ly in OMR sheet pag on sheets other than	e 5 of the Answer Booklet. OMR will not be valued.
				PAR	T - A	
1	a.	•	An electron and vave length λe//	a proton are accelera		tential. The ratio of deBroglie
			A) 1	B) me/mp	C) mp/me	D) $\sqrt{\frac{mp}{me}}$
		iii) I	A) Single valu In a black body shorter wave le A) Stefan's C) Rayleig	radiation Spectrum, to ngth side with the incomes law gh-Jean's law scity of the particle is	C) Continuous the maximum energy crease in temperature B) Wein's law D) Planck's law	peaks shifts towards the This confirms Phase velocity is
	b.	Descr	ibe Davisson aı	nd Germer experimen	t for confirmation of	deBroglie hypothesis.
	c.			roup velocity. Calcul locity 20 km/h.	ate the deBroglie w	(08 Marks) avelength of a bullet of mass (08 Marks)
2	a.	ii) Ar	A) Energy C) Probabi n electron has a A) 0.01m n electron movi d ψ ₂ at x = a for	lity density speed of 100 m/s, acc B) 0.0115m and a box of length $r = 2$, then $\frac{\Psi_2}{\Psi_1}$ is	B) Particle densit D) Charge densit curate to 0.005%. Th C) 0.024m	
	b. с. d.	Explair Set up A equa	A) zero in Heisenberg's Time-independation particle co	ised energy of a parti B) h ² /8mL ² suncertainty principle dent one-dimensional onfined to one dimensional	C) $\frac{2h^2}{8mL^2}$ e. Give its physical si Schodinger wave equivalent sional box of width i	gnificance. (06 Marks) quation. (06 Marks) n its first exited state. What is
		the probox.	obability of fine	aing particle at interv	al of $\frac{a}{2}$ marked sym	metrically at the centre of the

3	a.	i)	If the mobility of the V ^d is given by	electron is 7 X	10^{-3} m ² /vs, when acc	elerated by a fie	ld 1v/cm, the
		(ii		B) 0.7m/s	C) 7 X 10 ⁻² m/s	D) 0.00	7m/s
		11)	A) $\rho \alpha \frac{1}{T}$		-	letal is D) ραΊ	
		iii)	The Fermi factor for	V I			
			A) 1	B) $\frac{1}{2}$	C) 0	D) 2	
		iv)	According to Quantu A) Continuous	m Free electron B) Discrete	Theory, the energy lo C) Overlapping	evel in a metal a D) None	
	b.		rive an expression for	Density of state	s for conduction elec	ctron for unit vo	of metal
	C.	Dis assi	cuss the various draw umption made in quan	wbacks of classi tum theory to ov	ical free electron the rer come.	eory of metals.	What are the
4	a.	i)	The Polarisation tha	at occur in the fro	equency range 10 ¹² H	2 is	
		ii)	A) Ionic If two electric charg system is	B) Electronic ses are q, separate	C) Orientation ed by a distance L. T	n D) Spac he dipole mome	ce charge ont of the
			A) q/L	B) L/q	C) qL	D) q/L ²	
		iii)	Choose the correct re	elation	_	•	
		٠,	A) $E = \epsilon_0(\epsilon_r - 1)P$	B) $P = \epsilon_0$	$(\in_r - 1)E$ C) $\in_r =$	• K-1 D) D	$= \in 0 (\in r-1)E$
		1V)	if the distance between	en the plates of	capacitor is increased	d double, the car	pacitance is
	b.	Der	A) Doubled B) In ive the equation for in	ternal field in ca	times C) Halved se of solid or liquid	D) Constar	it (04 Marks)
							(08 Marks)
	c.	Der	ive Clausius-Mossuti	equation for 3-di	mensional cubic soli	d dielectric.	(08 Marks)
				PAR			
5	a.		Pumping process used				
		::\	A) Optical pumping	B) Forward b	oias C) Electric d	ischarge D) N	one of these
		11)	The life time of an ato A) a few seconds			er	
			C) a nano second	B) unl	milli second		
		iii)	The purpose of the op	tical resonator in	a laser is		
			A) to provide cover	to the active me		vide path for ato	oms
			C) to provide selecti	ivity of photons	D) to sen	d laser in specif	
		iv)	In He-Ne lasers, the ra	itio of He-Ne is i	n the order	1	
	h	*****	A) 1:10	B) 1:1	C) 10:1	D) 100:1	(04 Marks)
	b.	With	the help of energy	level diagram, o	lescribe the construc	ction and worki	ing of He-Ne
	c.	laser		out - CD - 11 / /			(08 Marks)
	d.	A la	e a note on measurem	ent of Pollutants	in a atmosphere using	ig laser.	(04 Marks)
		pulse	ser beam with Power is 3.941 X 10 ⁷ , calcu	late the wavelen	tasts 10ns, if the nu	imper of photon	
							(04 Marks)
Ó	a.	i) 1	Numerical aperture of	an optical fiber o	lepends on		
•			A) Diameta of the		 Acceptance angle 		
			C) Critical angle		D) η _{core} material		

		ii) The width of	the energy gap o	f a super conduct	or is maximum at	
		A) T _c	B) OK	$C)\frac{T_c}{2}$	D) $\frac{T_c}{3}$	
	b. c. d.	iv) Fractional inc 1.498 is A) 0.00415 With neat figure Give a brief acco	is for providing that higher R.I the lex changes of Op B) 0.0415 derive an expression of SOUID.	greater strength nan core otical Fiber for R. C) 0.043 tion for N.A in an	B) Core has higher D) None. I of core and cladding D) 0.004 optical Fiber. and out put power 7.5 and out put power 7.5 and controls.	(04 Marks) (06 Marks)
		specification in c	able?		and out put power 7.5	(04 Marks)
7	a.	i) The relation b	etween atomic ra	dius and lattice of	onstent in FCC struct	are is
		A) $a=2r$	B) $2\sqrt{2}r$	$C) a = \frac{\sqrt{3}}{4}$	D) $\frac{4r}{\sqrt{3}}$	
	b. c. d.	 iii) A crystal of T A) a = b iv) For every rota A) θ Derive an express With neat fig, exp 	B) 0.74 Setragonal lattice = c B) a settion by an angle B) 30 ion for inter plantal struct er of Bragg's refi	C) 0.52 is	D) 0.34 $a = b \neq c$ D) a trometer, detector turn D/2 D) 2 as of miller indices. ungle of 20° in the pla	ns by an angle θ (04 Marks) (06 Marks)
8	b.	ii) As per the scalA) Decreaseiii) The ultra SoniA) Solid	sheet B) Gring laws, the freq of size B) In cs can exist only B) Liquid f ultrasonic wave lus B) Density erials? Write a no	aphene sheet uency of operation crease of size as longitudinal w C) Gase s through the lique C) Volume of the on carbon nan	on increases with C) Constant I aves in S D) All the sid is proportional to D) Rigidity modules.	

* * * * *

•

			T	T		1	Т		Srinivas Institute of	Lictiniolog)
USN								3	Library, Mang	galore	06PHY12/22

First/Second Semester B.E. Degree Examination, Dec.09/Jan.10 **Engineering Physics**

Time: 3 hrs.				Max. Marks:100
Notes I Assessment Titring C 11	. •	-	_	man. marks.100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet.
- 3. Answer to objective type questions on sheets other than OMR will not be valued.
- 4. Physical constants: Electron mass = 9.1×10^{-31} kg, Neutron mass = 1.675×10^{-27} kg, $h = 6.63 \times 10^{-34}$ Js, $K = 1.38 \times 10^{-23}$ J/K, $N_A = 6.025 \times 10^{-23}$ /mole, $\varepsilon_0 = 8.85 \times 10^{-12}$.

PART - A

- Wien's law is deduced from Planck's radiation formula under the condition of 1 A) Very small wavelength and temperature B) Large wavelength and temperature
 - C) Small wavelength and high temperature D) Large wavelength and small temperature
 - ii) The Compton wavelength is given by
 - A) $\frac{h}{m \cdot C^2}$

- B) $\frac{h^2}{m_o C^2}$ C) $\frac{h}{m_o C}$ D) $\frac{h^2}{2m_o C}$
- iii) Which of the following relations can be used to determine de Broglie wavelength associated with a particle?
 - A) $\frac{h}{\sqrt{2mE}}$
- B) $\frac{h}{mv}$ C) $\frac{h}{\sqrt{2meV}}$
- D) All of these.
- iv) If the group velocity of a particle is 3×10^6 m/s, its phase velocity is
- B) 3×10^6 m/s
- C) 3×10^8 m/s D) 3×10^{10} m/s (04 Marks)
- b. What is Planck's radiation law? Show how Wien's law and Rayleigh-Jean's law can be derived from it. (06 Marks)
- c. Define group velocity. Derive relation between group velocity and phase velocity. (06 Marks)
- d. A fast moving neutron is found to have a associated de Broglie wavelength of 2Å, find its kinetic energy and group velocity of the de Broglie waves. (04 Marks)
- 2 The normalization of wave function is always possible, if

B) $\int_{-\infty}^{\infty} \psi \psi^* dx = \text{finite}$

- D) All of these.
- ii) Schrodinger's time independent equation is applicable for the particles with
 - A) Constant energy

- B) Variable energy
- C) Only constant potential energy
- D) All of these.
- iii) The ground state energy of an electron in an infinite well is 5.6 meV. If the width of the well is doubled, the ground state energy is
 - A) 9.92×10^{-23} J
- B) 4.48×10^{-22} J
- C) 2.24×10^{-22} J
- D) None of these.
- iv) The wave function is acceptable wave function if it is
 - A) finite everywhere

- B) Continuous everywhere
- C) Single valued everywhere
- D) All of these.

- (04 Marks)
- b. State Heisenberg's uncertainty principle and discuss its physical significance. (06 Marks)
- c. Solve the Schrodinger's wave equation for allowed energy values in case of a particle in a potential box. (10 Marks)

3	a.	i)	For ordinary metals A) has a positive int C) goes through the	tercent	B) has a negative in D) none of these.	
		ii)			orrect for current der	nsity?
		·			C) $J = neV_d$	
		iii)				(T = 0 K) is 1, under the
			$A) E = E_F$		C) E >> EF	
	b.	De	A) 0.98×10^6 m/s	B) 1.39×10 ⁶ m/s free electron theory	C) 2.46×10^{3} m/s	conduction electron is D) None of these.(04 Marks) l in overcoming the failures (06 Marks)
	c.	Wł	nat is Fermi energy?	Discuss variation of	Fermi factor with en	ergy and temperature. (06 Marks)
	d.		lculate the probabilit el at 200 K, in a mat		upying an energy lev	vel 0.02 eV above the Fermi (04 Marks)
4	a.	i)	What changes in tremoved? A) Increases	•		if the dielectric material is e D) None of these.
		,	The relation betwee A) $H = \mu_0(M + B)$	$B) M = \mu_0(H + B)$	C) $B = \mu_0(H + N)$	I) D) None of these.
		iii)	$2.07 \times 10^{3} \text{kg/m}^{3}$. The	emental solid diel e number of atoms po B) 3.89×10 ²⁵ /m ³	er unit volume for su	weight 32.07 and density lphur is D) None of these.
		,	A) Lead	B) Mica	ly the piezoelectric n C) Iron	D) Quartz. (04 Marks)
	b.	Wl pol	hat is meant by polarization mechanism	olarization mechanis	sm in dielectrics? I	Discuss any three different ndence. (08 Marks)
	c.	De	scribe hard and soft	magnetic materials.		(04 Marks)
	d.	fie	delemental solid die ld to be Lorentz in 10^{28} atoms/m ³ .	lectric material has passed field, calculate the	polarisability 7×10 ⁻⁴⁰ dielectric constant	Fm ² . Assuming the internal for the material, if it has (04 Marks)
				PART -	<u>- B</u>	
5	a.	i)	The life time of an A) few mili second	atom at the ordinary B) few nano secon	excited state is of the	e order of ond D) Unlimited.
		ii)	The relation between	en Einstein's coeffici	ients A and B is	•
		ĺ	A) $\frac{8\pi h\lambda^3}{c^3}$	$\mathrm{B})\frac{8\pi \mathrm{h}^2 \mathrm{v}^3}{\mathrm{c}^3}$	C) $\frac{8\pi h v^3}{c^3}$	$D)\frac{8\pi h v^3}{c^2}$
		iii`	The number of mo	des of standing wav	es in the resonant ca	avity of length 1m, if He-Ne
		,	laser operating at w	/avelength of 6328 Å	is	D) None of these.

5	a.	being do A) Only B) Comp C) No in	ne, then 10% of info dete information of	gram which is 10% rmation of the object ation of the object is f the object can be o	obtained	reconstruction	
	h	D) None		1			(04 Marks)
	b.	Einstein coefficient. (07 Mark					
	c.	Describe the recording and reconstruction processes in holography, with the help of suitable diagrams. (05 Marks)					
	d.	A ruby laser emits pulse of 20 ns duration with average power per pulse being 100kW. If the number of photons in each pulse is 6.981×10^{15} , calculate the wavelength of photons. (04 Marks)					
6	a.	i) In a singl A) 125 μ		e, the diameter of the B) 100 μm	e core is nearly equal C) 50 μm	l to D) 10	μm
				re of an optical fibrosis in water of refract B) 8.65'			•
		iii) The loss of	of power by	the optical signal th	C) 0.11' arough the optical fibraring C) Wein's scar	re is mainly du	ne of these. e to of these.
		iv) When the A) attracts	type-I super s the magne	rconducting materia	al is placed in an exte B) enhances the ma D) does not influen	rnal magnetic i	field, it nes
	b.	Describe the j	point to poir	nt communication sy	vstem, with the help of	of a block diag	
	c.	Discuss BCS theory of superconductor. Explain SQUID.					(07 Marks)
	d.	internal refle	ction that v	refractive index 1 will contain light to tion is allowed for the	.50 is to be clad wi travelling within 5° he cladding?	th another gla of the fibre	ss to ensure axis. What (04 Marks)
7	a.	i) Which or A) SnO ₄		owing crystal is an o	example of monoclin C) CaSO ₄	nic? D) CuSO ₄	
		ii) In a simp A) 6:3:		ce the ratio d_{100} : d_1 B) $\sqrt{3}$: $\sqrt{6}$: 1	d_{111} is C) $6:3:\sqrt{2}$,	:√ <u>2</u>
		iii) Which on A) Simple			tes is not found in cul C) Body centered	bic crystal?	
		iv) The packi A) 34%		of diamond crystal s B) 52%	structure is C) 68%	D) 74%	(04 Marks)
	b.	Discuss the Br	avais lattice	and any five crysta	l systems with the he	elp of illustration	ons. (08 Marks)
	c.	Define coordinates becastructures.	nation numb	er and packing fact	or. Calculate the pac	king factor for	sc, fcc and (08 Marks)

8	a.	i)	Which one of these does not represent a type of carbon nano tube?				
		,		B) Wavy	C) Zig-zag	D) Arch discharge	
		ii)	The bulk material red A) Quantum dot	luced in two directio B) Quantum wire	ns is known as C) Film	D) Reduced struct	ure.
		iii)	The ultrasonic waves A) Electromagnetic in C) Piezoelectric effect	nduction	B) Electric tuning fork D) Inverse piezoelectric effect.		
		iv)	Which of the procedures is not employed A) Ultrasonic method C) Alpha ray method		d to detect the internal flaws of a material? B) Magnetic method D) Dynamic testing (04 Mark		

b. Discuss the variation of density of states for different quantum structures. (08 Marks)

c. What is non-destructive testing? Explain with principle, how flaw in a solid can be detected by non-destructive method, using ultrasonics. (08 Marks)

* * * *

USN

H	. (3		

Somivas institute of techniques

06PHY12/22

First/Second Semester B.E. Degree Examination, May/June 2010 **Engineering Physics**

		2.An 3.An 4.Ph h m =	Max. Marks:100 aswer any FIVE full questions, choosing at least two from each part. Aswer all objective type questions only in OMR sheet page 5 of the Answer Booklet. Aswer to objective type questions on sheets other than OMR will not be valued. Asysical Constants: Velocity of light, $c = 3 \times 10^8 \text{ms}^{-1}$, Plank's constant, $= 6.625 \times 10^{-34} \text{JS}$, Electron charge, $= 1.602 \times 10^{-19} \text{C}$, Mass of electron, $= 9.11 \times 10^{-31} \text{kg}$, Avogadro number, $N_A = 6.02 \times 10^{26} / \text{K}$ mole, Permittivity of vacuum, $= 8.85 \times 10^{-12} \text{Fm}^{-1}$, Boltzmann constant, $= 1.38 \times 10^{-23} \text{J/K}$.						
1	a.	i)	PART – A In a blackbody radiation spectrum, the Wein's distribution law is applicable only for						
		ź	A) Longer wavelength B) Shorter wavelength						
		•••	C) Entire wavelength D) None of these.						
		ii)	The de Broglie wavelength associated with an electron of mass m and accelerated by a potential V is						
			A) $\frac{h}{2\text{Vem}}$ B) $\frac{\sqrt{2\text{mVe}}}{h}$ C) $\frac{h}{\sqrt{\text{Vem}}}$ D) $\frac{h}{\sqrt{2\text{mVe}}}$						
			$\frac{A}{2\text{Vem}} \frac{B}{h} \frac{C}{\sqrt{\text{Vem}}} \frac{D}{\sqrt{2\text{mVe}}}$						
		iii)	Electron behaves as a wave because they can be						
			A) Diffracted by a crystal B) Deflected by magnetic field C) Deflected by electric field D) Ionics a second						
		iv)	C) Deflected by electric field D) Ionise a gas. If the group velocity of de Broglie wave is 4 x 10 ⁸ m/sec, its phase velocity is						
		,	A) $12 \times 10^8 \text{m/sec}$ B) $2.25 \times 10^8 \text{m/sec}$ C) $5.33 \times 10^8 \text{m/sec}$ D) $1.33 \times 10^8 \text{m/sec}$.						
	L.	(04 Marks							
	о. С.	Explain duality of matter waves. (04 Marks) Define phase velocity and group velocity. Show that group velocity is equal to mark the							
	-	velo	Define phase velocity and group velocity. Show that group velocity is equal to particle velocity. (08 Marks)						
	d.	Calc	sulate the momentum of the particle and de Broglie wavelength associated with an						
		elect	tron with a kinetic energy of 1.5 K eV. (04 Marks)						
2	a.	i)	If free electron exists in a nucleus, its energy value must have a minimum energy of about						
			A) 4 MeV B) 20 MeV C) 20 KeV D) 10 KeV						
		ii)	According to Max Born approximation $ \psi^2 $ represents						
			A) Charge density B) Particle density C) Energy density D) Probability density.						
		iii) If E ₁ is the energy of the lowest state of a one dimensional potential box of length							
			and E_2 is the energy of the lowest state when the length of the box is halved, then A) $E_2 = E_1$ B) $E_2 = 2E_1$ C) $E_2 = E_1/2$ D) $E_2 = 4E_1$						
		iv)	The wave function for the motion of the particle in a one dimensional potential box of						
			length 'a' is given by $\psi_n = A \sin\left(\frac{n\pi x}{a}\right)$, where A is normalization constant. The						
			value of A is						
			A) $\frac{1}{\sqrt{a}}$ B) $2/\sqrt{a}$ C) $\sqrt{\frac{2}{a}}$ D) $\sqrt{\frac{a}{2}}$ (04 Marks)						

(04 Marks)

b.	Sta elec	te and explain Heisenberg's uncertainty principle and prove that nuclei do not contain etron. (08 Marks)				
c.	Discuss the wave functions and probability density for particle in an infinite potential well,					
d.		electron is bound in one dimensional potential well of width 0.18 nm. Find the energy				
	valı	the in eV of the second excited state. (04 Marks)				
a.	i)	The collision time and root mean square velocity of an electron at room temperature				
		are 3×10^{-14} sec and 1×10^{5} m/s respectively. The classical value of mean free path of the electron is				
		A) 3×10^{-19} nm B) 3 °A C) 3 nm D) 17.3 nm				
	ii)	Mobility of electron is				
		A) Reciprocal of conductivity				
		B) Flow of electronsper unit				
		C) Reciprocal of resistivity				
		D) Average electron drifts velocity per unit electric field.				
	iii)	The quantum mechanical expression for electrical conductivity is				
		A) $\sigma = \frac{m * v_F}{ne^2 \lambda_F}$ B) $\sigma = \frac{ne^2 \lambda_F}{m^2 v_F}$ C) $\sigma = \frac{m * v_F}{n^2 e^2 \lambda_F}$ D) $\sigma = \frac{m *}{ne^2 \lambda_F}$				
	iv)	If the Fermi energy of metal at 0° K is 5 ev, f(E) for Fermi energy at $T > 0^{\circ}$ K is A) 0.5 eV B) 1 eV C) 0.75 eV D) 0 eV. (04 Marks)				
b.	Defi	ne relaxation time and discuss the dependence of electrical resistivity of metals with				
	temi	ACPOINTED AND A MARIANIAN.				
c.		dain how quantum free electron theory succeeds in overcoming the drawbacks of				
	class	vical frag alastra 41				
d.	A ur	inform silver wire has resistivity 1.54×10^{-8} ohm-m at room temperature for an electric				
۵.	field	2 v/m. Calculate relaxation time and drift velocity of the electrons, assuming that there				
	are 5	9×10^{24} conduction alone.				
	arc	$7.6 \times 10^{\circ}$ Conduction electrons per cm° of the material. (04 Marks)				
a.	i)	For a given dialogation the electron 1.1.1.11.				
a.	1)	For a given dielectric, the electron polarizability, α_e				
		A) Increases with temperature				
		B) Decreases with temperature				
		C) Independent of temperature				
	••>	D) May increase or decrease with temperature.				
	ii)	If two point charges of opposite sign $+ q$ and $- q$ are separated by a distance l . The electric dipole moment is				
		A) q/l B) q/l^2 C) $[(+q)(-q)]/l^2$ D) ql				
	iii)	A) q/l B) q/l^2 C) $[(+q)(-q)]/l^2$ D) ql The polarization that occurs in the frequency range 10^{13} to 10^{16} Hz is				
		A) Electronic B) Orientational C) Ionic D) Space charge				
	iv)	For ferromagnetic substance, the Curie – Weiss law is given by				
		A) $\chi = \frac{C}{T}$ B) $\chi = \frac{C}{(T-\theta)}$ C) $\chi = \frac{(T-\theta)}{C}$ D) $\frac{C}{(T+\theta)}$. (04 Marks)				
b.	What	is internal field? Derive an expression for the internal field incase of				
	one -	dimensional amount of $F = 4$				
c.		amount managed in the state of 1.0 Division i				
d.		lid dielectric materials? Discuss their properties. (04 Marks) lid dielectric material has electronic polarizability 7×10^{-40} FM ² . If it is a cubic				
		ture, calculate the relative permittivity of the material. It has 3×10^{28} atoms/m ³				

3

PART – B

5	a.	i)	Which of the following is not a laser property?
			A) Highly monochromatic
			B) High directionality
			C) Very narrow band width
		::7	D) Highly divergent.
		ii)	The life time of an atom in the excited state is of the order of
			A) Millisecond B) Few seconds
		iii)	C) Nano seconds D) Unlimited.
		111)	Pumping technique used in He – Ne gas laser is A) Forward bias
			B) Optical pumping C) Electrical discharge
			D) High injection current.
		iv)	3D image of an object constructed by 1.1.
		14)	3D image of an object constructed by hologram is the process of A) Intensity recording
			B) Phase information recording
			C) Both phase and intensity information recording
			1)) Transmission and reflection was all
	b.	Disc	cuss the possible ways through which radiation and matter interaction takes place. (04 Marks)
	c.	Des	cribe the construction and working of semiconductor laser. (06 Marks)
	d.	Calc	culate on the basis of Einstein's theory the number of photons emitted per second by
		He-	- Ne laser source emitting light of wavelength 6328°A with an optical power 10 mw.
			(04 Marks)
		• `	
	a.	i)	Superconductor in superconducting state behaves as
			A) Monovalent metals
			B) Ferro magnetic materials
			C) Good conductors at room temperature
		::\	D) Diamagnetic materials.
		ii)	A super conducting material, on being subjected to the critical field, changes to
			A) Critical conductivity P) Symposium districts the sixty of the sixt
			B) Superconducting which is independent of temperature
			C) Normal state
		iii)	D) Remains uninfluenced.
		111)	Fractional index change of optical fiber and refractive index of core are 0.00515 and
			1.533 respectively. The cladding refractive index is A) 1.492 B) 1.525 C) 1.499 D) 1.511
		iv)	
		11)	Attenuation in the optical fiber causes due to A) Absorption B) Scattering C) Dispersion D) All the three
			D) An the three.
t) .	What	is Meissner effect? Explain the BCS theory of superconductors. (04 Marks) (08 Marks)
c	.]	Deriv	e the expression for numerical aparture of an anti-1.51
d		An o	ptical fiber has core R.I. 1.5 and R.I. of cladding is 3% less than the core index.
	(Calcu	late the numerical aperture, angle of acceptance and internal critical acceptance angle.
			and internal critical acceptance angle.

(04 Marks)

7	a.	i)	Nearest neighbour distance bet	ween two atoms in case of bcc structure is	8				
			A) $(a\sqrt{3})/2$	B) $2a/\sqrt{3}$					
			C) $(a\sqrt{2})/2$	D) $2a/\sqrt{2}$					
		••							
		ii)		ase of simple cubic crystal structure is					
			A) 12	B) 8 D) 6					
		•••	C) 2	,					
		iii)		\neq c and angles $\alpha = \beta = \gamma = 90^{\circ}$ represents					
			A) Cubic	B) Hexagonal D) Tetragonal.					
			C) Orthorhombic	, ,	indiana af tha				
		iv) A plane intercepts at a, b/z, 2c in a simple cubic unit cell. The miller ind							
			plane are	D) (241)					
			A) (214)	B) (241)	(0.4 N/L1)				
	1	D C	C) (421)	D) (124).	(04 Marks)				
	b.			escribe crystal structure of diamond.	(08 Marks)				
	c.		ve Bragg's law.	. C	(04 Marks)				
	d.			of wavelength 1.5 °A undergoes second					
		reflection from the plane (211) of a cubic crystal, at a glancing angle of 54.38°. Calculate the							
		lattic	ce constant.		(04 Marks)				
8	a.	i) The elastic behaviour of the liquid is characterized by its							
			A) Young's modulus	B) Modulus of rigidity					
			C) Bulk modulus	D) Poisson's ratio					
		ii) The relation between longitudinal velocity and transverse velocity of ultrasonics in the							
		given material is							
		A) Longitudinal velocity is same as transverse velocity							
		B) Longitudinal velocity is greater than transverse velocity							
		C) Transverse velocity is greater than longitudinal velocity							
		D) Transverse velocity is double the longitudinal velocity.							
		iii) The state of matter around the nano size is known as							
		·	A) Liquid state	B) Plasma state					
			C) Mesoscopic state	D) Solid state.					
		iv) A bulk material (three dimensions) reduced in two directions is known as							
		ĺ	A) Quantum dot	B) Quantum particle					
			C) Film	D) Quantum wire.	(04 Marks)				
	b.	Explain density of states for various quantum structures. (08 Marks)							
	c.	. What is non destructive testing? Describe the method of measuring velocity of ultrasonic							
			res in solids.		(08 Marks)				

* * * * *